

Technology is at the heart of today's biological research. At the C2RT, we constantly update our technology portfolio in order to support Institut Pasteur scientists in their aim to discover innovative ways to prevent and cure diseases.

Christophe d'Enfert,

Vice-president for technology and scientific programs of Institut Pasteur, director of the center for technological resources and research

CONTENTS

05 Introduction

07 OMICS, PROTEOMICS AND SINGLE CELL

- 08 Biomics CF
- 10 Mass Spectrometry for Biology UTechS
- 12 Cytometry and Biomarker UTechS

15 MULTISCALE IMAGING

- 16 Photonic Bio-Imaging UTechS
- 18 Ultrastructural Bio-Imaging UTechS
- 20 Nano-Imaging CF
- 22 Image Analysis Hub

25 NANOBODY DISCOVERY, PROTEIN PRODUCTION, MOLECULAR BIOPHYSICS AND STRUCTURAL BIOLOGY

- 26 Production and Purification of Recombinant Proteins CF
- 28 Antibody Engineering CF
- 30 Molecular Biophysics CF
- 32 Crystallography CF
- 34 Biological NMR CF

37 SCREENING, MICROFLUIDICS AND ORGAN ON CHIPS

- 38 Chemogenomic and Biological Screening CF
- 40 Biomaterials and Microfluidics CF

43 Annexes

- 45 Guidelines
- 48 Appendix
- 49 Affiliation of UTechS/CFs to Scientific Departments
- 50 Location of UTechS/CFs

INTRODUCTION

A favorable technological environment

Providing Institut Pasteur research teams with a favorable and enabling technological environment to advance their discoveries is a priority of the strategic plan of the institute.

To support research in a cost-effective manner and achieve higher usage and impact of cutting-edge equipment requiring high-level expertise for its operation, a set of strategic technological resources are gathered within the Center for Technological Resources and Research (C2RT).

Support in animal research and animal models is provided through the Center for Animal Resources and Research (C2RA), allowing animal experiments to be performed in the best ethical and regulatory conditions. Detailed information on the Center for Animal Resources and Research (C2RA) is available in a companion brochure.

Mission of the Center of Technological Resources and Research

The mission of the C2RT is to support Institut Pasteur research teams and scientific departments in achieving their research objectives by addressing their present and future technology needs.

C2RT aims at:

- Providing researchers with state-of-the-art equipment, services and technical expertise to enable the success of their projects
- Providing training and education on advanced technologies and methods
- Sourcing new and emerging technologies through technological watch
- Proposing to research teams technological and methodological developments
- Identifying in close connection with the Scientific Departments the strategic needs for technological equipment and expertise

Organized in 4 Technology and Service Units (UTechS) and 13 Technology core facilities covering a large range of technological areas, C2RT is a key component of Institut Pasteur's research ecosystem.

A development of core facilities in close interaction with Institut Pasteur research Departments and teams

Each Unit of Technology and Service and Technology core facility of the C2RT works in close connection with the Scientific Departments at several levels. This ensures that their activities, developments and strategy are aligned with the needs of Institut Pasteur's research community:

- organizational level: most of the C2RT Units of Technology and Service and Technology core facilities are affiliated to the Direction of Technology and Scientific Programs (DTPS) and to a scientific Department.
- research team support level: user committees and general assemblies are organized regularly by the Units of Technology and Service/Technology core facilities.
- strategic level: Scientific Departments are represented at the Steering Committees organized by each Unit of Technology and Service/Technology core facility. Steering Committees help define a strategic vision for the core facility in terms of technological developments, acquisition of large equipment and recruitment of personnel that would support these developments and the associated funding strategies.

OMICS, PROTEOMICS AND SINGLE CELL

Biomics core facility

A structure dedicated to the sequencing of second (short-reads) and third (long-reads) generation

Head of Core Facility: Marc Monot

Contact

Mail: biomics@pasteur.fr

Website: https://biomics.pasteur.fr

Mission

The mission of the Biomics core facility is to facilitate scientific discovery through high-throughput sequencing technologies.

To this end, it offers personalised support per project, ranging from training in the various sequencing methods, including the use of autonomous sequencers, to complete management, from sampling to data analysis, for the most complex projects.

On the other hand, Biomics carries out internal development projects to be able to continue to offer the latest advances in sequencing.

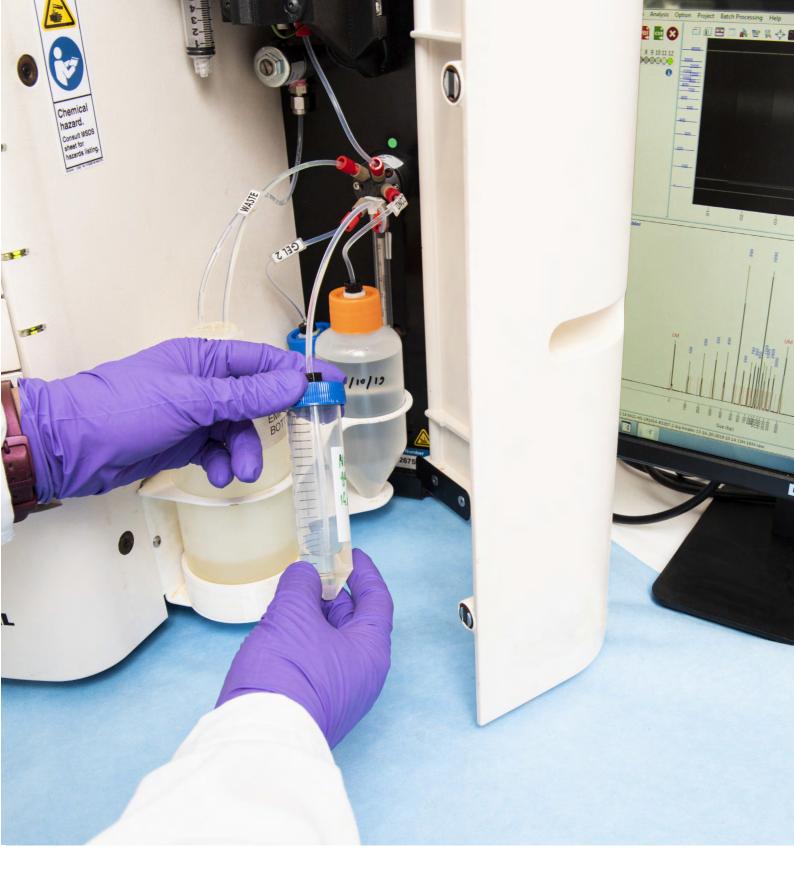
What we do

Biomics is a structure dedicated to the highthroughput sequencing of second (shortreads) and third (long-reads) generation. The short-reads sequencing is centered on the Illumina technology for which we are equipped with ISeq, MiSeq and NextSeq instruments. We have acquired a Pacific Bioscience Sequel instrument for long-reads sequencing and also have access to Oxford nanopore technologies.

Our team provides training on the autonomous use of equipment (BioAnalyzer, QuBit, Covaris, ISeq, NextSeq) for the realization of standalone sequencing.

We are constantly optimizing and adapting new protocols. This includes the automation of workflows and working with degraded or lowconcentration samples. For data analysis, our dry-lab offers many standard pipelines as well as the development of dedicated pipelines.

Our expertise includes


- Technology: Short-Reads (Illumina), Long-Reads (PacBio & Nanopore)
- DNA-Seq: Sequencing de novo and targeted
- RNA-Seq: Transcriptomic Analysis
- Metagenomic: Targeted sequencing studies (16S, 18S, ITS) or random (Shotgun)
- Bioinformatics: NGS data analysis (Variant, Assembly, Methylation study...)

Some examples of success stories

Biomics involvement in Sequana, a Python framework designed to provide pipelines to analyse NGS data sets, has lead to the publication of a dynamic graphical interface (Sequanix) and a stand-alone application to decipher genomic variation (sequana_coverage).

How to work with us/how to apply for support

A request for support starts by asking a question or submitting a new project via our project manager: https://biomics.pasteur.fr.
Then you will be put in contact with a Biomics project manager who will explain the next steps of your sequencing project (kickoff, libraries, sequencing, data analysis...).

Certifications and Networks

We are IBiSA labeled and ISO 9001 certified. We are cofounder of the France Génomique Consortium.

Mass Spectrometry for Biology (MSBio UTechS)

Towards a deeper exploration of proteomes

Proteins are the chief actors in cells, carrying out the activity specified by the information encoded in genes. The large-scale analysis of proteins can therefore provide significant insight into many cellular processes and their dysregulation. The last decade has seen amazing advances in mass spectrometry-based proteomics and the technology is now used for large variety of biological applications. The objective of the MSBio UTechS is to develop innovative mass spectrometry-based proteomics approaches for applications in biology and human health with a particular emphasis in infectious diseases.

Head of UTechS: Julia Chamot-Rooke Head of Core Facility: Mariette Matondo

Mail: msbio@pasteur.fr

Website: https://research.pasteur.fr/fr/team/

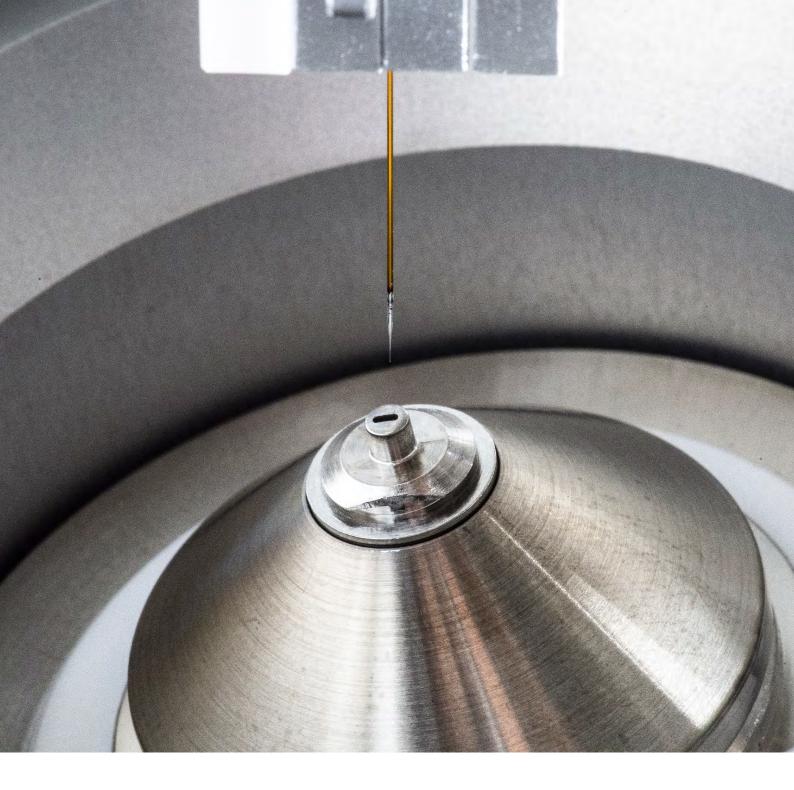
mass-spectrometry-for-biology/

Mission

The Mass Spectrometry for Biology (MSBio) Unit aims at developing service and research activities in mass spectrometry for the analysis of proteins.

It comprises a facility, providing mainly service in bottom-up proteomics (large scale analysis of peptides after protein enzymatic digestion) and a research group with two main technological research axes: top-down proteomics (analysis of intact proteins) and structural proteomics (analysis of protein complexes).

MSBio is equipped with the latest generation of high-resolution mass spectrometers: Orbitrap Q-Exactive Plus, Orbitrap Q-Exactive HF, Orbitrap Fusion Lumos (Thermo Fisher Scientific). The MSBio UtechS is also a CNRS Unit of Service and Research (USR 2000).


What we do

Our Unit provides custom-tailored and innovative analytical solutions to meet the challenging demands of both academic laboratories and private companies. Our highly-trained staff offers expertise and counselling from sample preparation to data analysis in:

- Identification of low abundant proteins in complex biological matrices
- Advanced relative and absolute quantitative proteomic strategies
- Characterization of post-translational modifications (PTMs)
- Analysis of proteoforms (intact proteins) using top-down MS approaches
- Large-scale analysis of protein complexes (in vivo cross-linking MS)
- Structural analysis of proteins and protein complexes (Hydrogen/Deuterium Exchange MS, Native MS).

Some examples of success stories

- Unique French partner of the European Proteomics Infrastructure Consortium providing Access, EPIC-XS; https://epic-xs.eu)
- Development of an enhanced cross-linking MS workflow (Rey M et al., Anal. Chem. 2018)
- Characterization of SIRT2 modifications essential in Listeria infection (Pereira JM et al., Cell Rep. 2018)

How to work with us/how to apply for support

General enquiries shall be sent to msbio@pasteur.fr

For service: please contact proteomics@pasteur.fr

For the proteomics facility, a request form is available on the facility webpage.

To contact core facility members directly: proteomics@pasteur.fr

Certifications and Networks

We are IBiSA labeled and ISO 9001 certified. We are part of core for life, CTLS (core technologies for life sciences), LabEx, IBEID, EPIC-XS consortium.

Cytometry and Biomarker (CB UTechS)

Full support to a biomedical project within a single core facility

Through its unique configuration, the CB UTechS provides project-tailored solutions for fundamental, translational and clinical research, from sample processing to data analysis.

Head of CB UTechS: Milena Hasan

Head of the Cytometry Platform: Sophie Novault

Contact

Mail: crt-tc@pasteur.fr

Website: https://research.pasteur.fr/en/team/

technical-core/

Mission

The CB UTechS has the mission of facilitating biomedical research through state-of-the-art technologies. Our 30 instruments have been selected to allow cell phenotyping and sorting, protein and RNA profiling and single cell OMICS. A significant part of the equipment is installed within fully equipped Bsl2+ cell culture laboratories to permit manipulation of human and infectious material.

What we do

Our team provides high-quality service and training. Expert advice is available for experimental design and data analysis. We develop bioinformatic tools to analyze complex data generated by our technologies. We collaborate with researchers for the development and application of microfluidics-based technologies for 3D-spheroid and single cell/single pathogen studies.

We are strongly engaged in annual teaching programs and in practical work for Master courses.

Our expertise includes

- Cell phenotyping and sorting (Symphony A5, SP6800, MARKII, Astrios, FACSAria Fusion)
- Single-cell OMICS (10X Chromium, MARS-Seq)
- RNA (NanoString) and protein profiling (Bioplex and SiMoA)
- Live-content imaging (Incucyte) and cellular metabolism (Seahorse)
- Experimentation under hypoxia (Xvivo)
- Bioinformatic support

Some examples of success stories

We are the core facility of the LabEx project "Milieu Intérieur" (www.milieuinterieur.com). Through this collaboration we have established standardized pipelines for multi-level immunophenotyping and have contributed to publications in high-impact journals.

In collaboration with F. Spitz and H. Marlow we participated to the implementation to the MARS-Seq pipeline at Institut Pasteur (Sebe-Pedros, *Cell*, 2018).

How to work with us/how to apply for support

The CB UTechS is an open-access facility that currently welcomes 145 projects, and 300 users from Institut Pasteur and its International Network, from academia, clinics and industry.

The access is per-project based, upon submission of the project through our electronic project submission tool (http://crtechnologycore.pasteur.fr/v2/forms/login.php). Training request and instrument booking are available through PPMS. Researchers wishing to include our support in grant applications are encouraged to contact us by email.

Certifications and Networks

The CB UTechS is a highly collaborative core facility, both nationally and internationally. We are a Center of Excellence of the Federation of Clinical Immunology laboratories (FOCIS) and a member of the Afribiota and the "Milieu Intérieur" consortia. We are an IBiSA-labeled core facility.

Since 2011 the CB UTechS is ISO 9001 certified, providing quality assurance of our service.

CB UTechS is part of Core for Life and CTLS (Core Technologies for Life Science).

MULTISCALE IMAGING

Photonic Biolmaging (PBI UTechS)

Providing optical imaging expertise in life sciences and especially their application in studies on infectious biology

Head of UTechS: Spencer L. Shorte Head of Core Facility: Nathalie Aulner

Contact

Mail: pbi.contact@pasteur.fr

Website: https://research.pasteur.fr/en/team/

photonic-bioimaging-utechs-pbi/

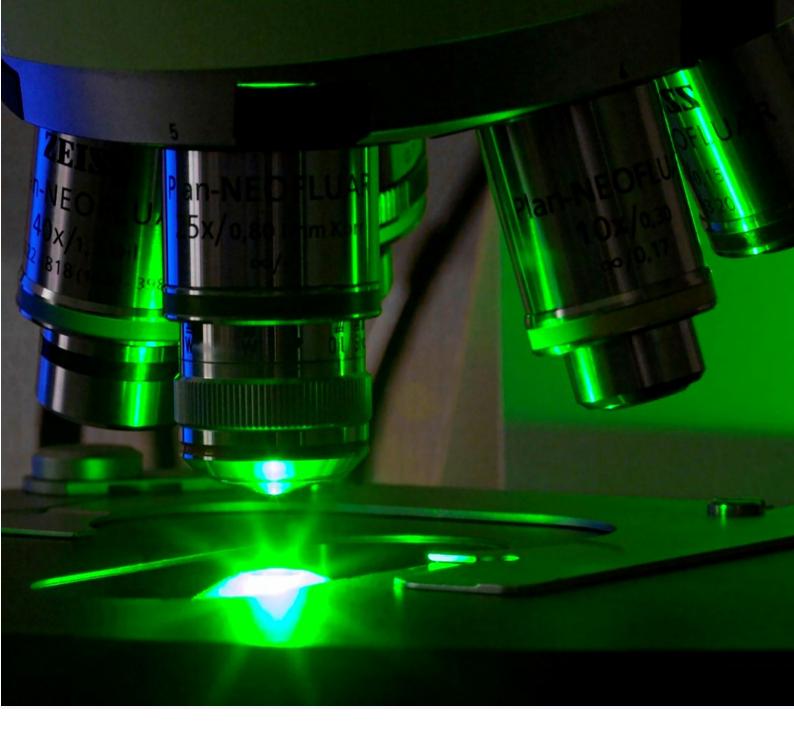
Mission

Our vision is highly multi-disciplined, and collaborative, with the mission goal focused on the use of quantitative imaging and analysis to understand the processes of cell/tissue-biology, and their usurpation by infection and disease.

Our team carries out support tasks and develops new protocols for optical imaging, including service rendering, training, technology-driven research and technology development. The R&D is founded upon the need to develop optical imaging methods that bring new understanding of host-pathogen interactions and in situ high-content imaging techniques and their application to infection, cell biology, and cellular microbiology. We work on novel techniques extrapolating quantitative information on spatiotemporal dynamics in situ and we push the limits of existing approaches aiming to enhance their performance thereby broadening their experimental utility.

Our expertise includes

- Intravital imaging
- In vivo technologies
- Super resolution technologies including sample preparation
- Molecular dynamics (SPT/FCS/FRAP/FLIM)
- High Content Imaging and Analysis
- Bioluminescence in cells, tissues and whole organism
- Technological development and implementation (optics, probe, data analysis)



Some examples of success stories

- 1. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool (PI: A. Danckaert).
 - Mayeuf-Louchart, et al., 2018. Skelet Muscle 8, 25.
 - Danckaert A. and Mayeuf A. (2018): "MuscleJ". DI 2018-40, dépôt à l'Agence de Protection des Programmes.
- BioImage analysis of Shigella infection (PI: P. Sansonetti and B. Marteyn).
 Arena ET et al. (Proc Natl Acad Sci U S A. 2015 Jun 23,112:E3282-90)
 Tinevez JY et al. (Nat Microbiol. 2019 Aug 5)

How to work with us/how to apply for support

Open desks are organized every other Monday afternoon to make a first contact with the team. A request for support starts by filling a form on our PPMS website for training, assisted session or collaboration. Based upon your request, you might be asked to fill additional documents (GMO, live pathogens or primary cells imaging). We aim to promote the vast majority to autonomous use of our instruments.

Certifications and Networks

We are IBiSA labeled and ISO 9001 certified.

We are part of the following networks: CTLS (core technologies for life sciences, cofounder), C4L (core for life), FBI (France BioImaging), FLI (France Life Imaging), ELMI European Light Microscopy Initiative, cofounder), RTmfm (Réseau de Microscopie de Fluorescence Multidimensionnelle), EuroBioImaging, Global-BioImaging, EuCAI (European Cell-based Assay Interest group, Cofounders).

Ultrastructural Biolmaging (UBI UtechS)

Seeing is believing

Electron microscopy is the method of choice to see fine details of cells and pathogens and to study how pathogens interact with their host in the most direct way. If you are interested in EM come and talk to us: we will help you find the best solution to your EM question.

Head of UTechS: Jacomina Krijnse-Locker

Contact

Mail: ubi.all@pasteur.fr

Website: https://research.pasteur.fr/en/team/ultrastructural-bioimaging-utechs-ubi/

Mission

We provide scientific and technical support in Electron Microscopy (EM) to research groups of Institut Pasteur and external institutes. We provide a wide range of sample preparations and imaging techniques and focus on the ultrastructural characterization of pathogens and host-pathogen interactions. We develop new sample preparations and imaging pipelines that can be applied in the projects of our users. The focus is on correlated light-and electron microscopy workflows that are essential to image key events of host-pathogens interactions.

What we do

- Sample preparation
- Scanning Electron microscopy
- Transmission Electron microscopy
- · Cryo-methods
- Immunolabelling
- 3D Electron Microscopy

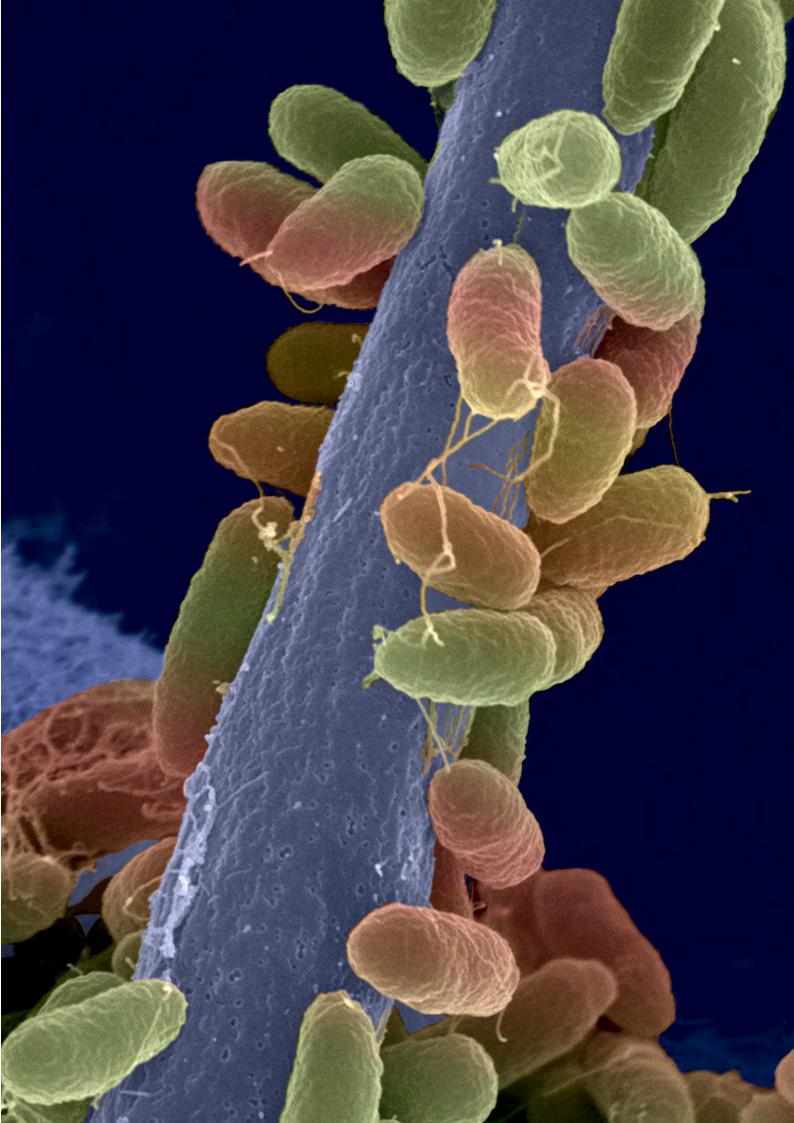
Some examples of success stories

 Characterization of tunneling nano-tubes by 3D-CryoEM:

Sartori-Rupp, A., Cordero Cervantes, D., Pepe, A., Gousset, K., Delage, E., Corroyer-Dulmont, S., Schmitt, C., Krijnse-Locker, J., Zurzolo, C., 2019. Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. *Nat. Commun.* 10.

 Anterograde/retrograde transport in the flagellum of trypanosomes by 3D EM:

Bertiaux, E., Mallet, A., Fort, C., Blisnick, T., Bonnefoy, S., Jung, J., Lemos, M., Marco, S., Vaughan, S., Trépout, S., Tinevez, J.Y., Bastin, P., 2018.


Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum. *J. Cell Biol.* **217**, 4284-4297.

How to work with us/how to apply for support

New project requests should be submitted *via* our online system PPMS (https://www.pasteur.fr/ppms/login/?pf=5). You will be asked to briefly present your project in our weekly team meeting.

Certifications and Networks

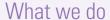
We are IBiSA labeled and ISO 9001 certified. We are part of FBI (France BioImaging), CTLS (Core Technologies for Life Science, C4L (Core For Life), Labex IBEID.

Nanolmaging Core Facility (NCF)

Cryo-Electron Microscopy for all who need it, or never thought they needed it

Head of Core Facility: Dr. Matthijn Vos

Contact

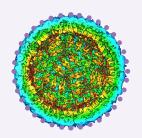

Mail: nanoimaging@pasteur.fr

Website: https://research.pasteur.fr/en/team/

nanoimaging/

Mission

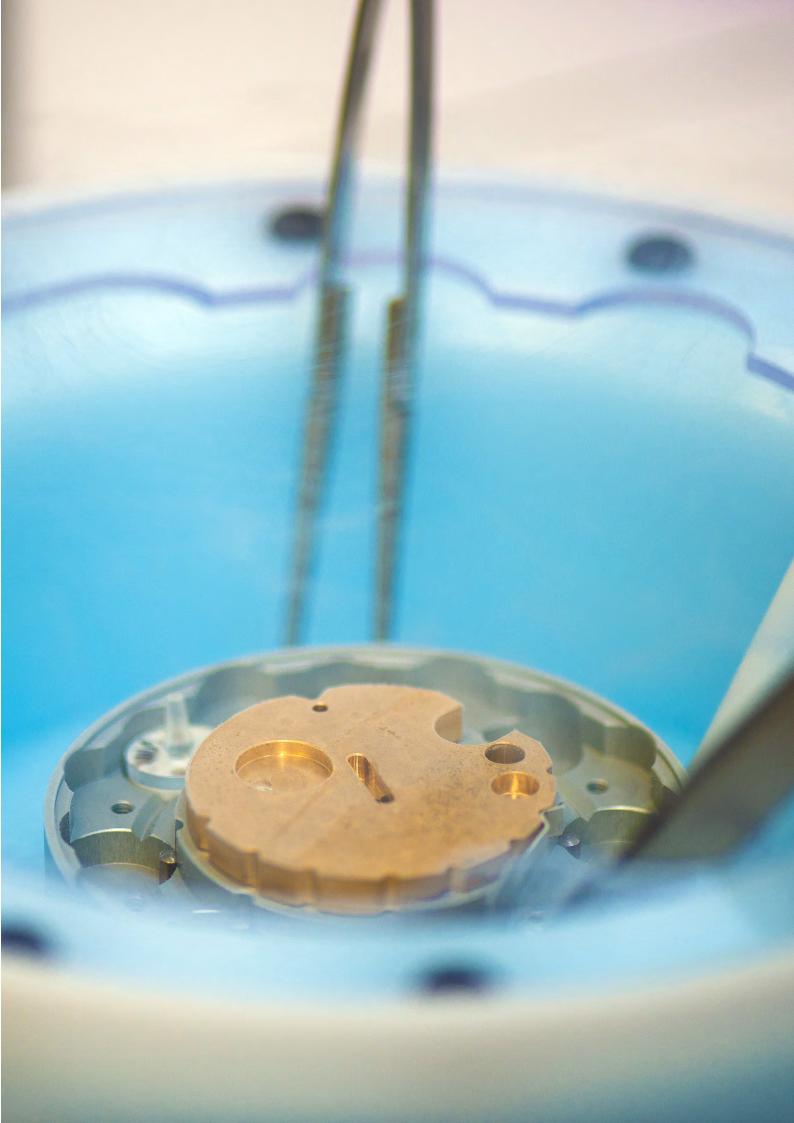
To make the technology of cryo-electron microscopy in all its forms accessible and available for all working at, or collaborating with Institut Pasteur.


The core facility provides high throughput cryoelectron microscopy aimed at resolving the structure of isolated proteins in solution as well as imaging at the nanometer inside the cellular environment.

Our expertise includes

- High-throughput sample preparation and screening
- High-throughput single particle analysis data collection
- Focussed Ion beam milling under cryogenic conditions
- High-throughput cryo-electron tomography
- Cryo-electron microscopy and sample preparation training and scientific consultancy

Some examples of success stories


The core facility started full operation on October 7, 2019. As of October 23, the core facility has screened over 80 samples, imaged over 20.000 images, served 4 Unit Pl's with 7 users multiple times and received 11 project submissions and produced 3 protein structures with 3 more being processed. The highest resolution obtained so far was a 2.3Å structure of Apoferritin.

How to work with us/how to apply for support

Applications for access will be accepted on a "first-come-first-served" basis for the initial phase of operation. The imaging days will be assigned in succession based on their date of submission. Each unit is allowed one day of imaging at a time. The second day can be requested after the first submission has been imaged, allowing each unit equal chance to image their projects under a fair use policy. Before the day of imaging, we advise to meet with the core staff to discuss the different projects and how to best approach the sample preparation and imaging, this is, however, not mandatory. It is up to the unit head to decide the order of imaging if a unit has multiple projects from different group leaders within the unit. Users can use the microscope without supervision only after sufficient training and proven ability to operate the microscope as well as approval from the core staff. Details on how to apply can be found on our website.

The Image Analysis Hub (IAH)

An open access / equal access core facility dedicated to services in Bioimage Analysis

The recent technological progresses in microscopy and probes fostered tremendous advances in Life Sciences fuelled by imaging. They opened the way to unique understanding of the mechanisms of life, in particular investigating the processes and dynamics of single cells and organelles. But these advances left us with a large quantity of image data and a new challenge to address: extracting quantitative information from images to get new insights.

The IAH is a new core facility. It was established at the end of 2017 to support researchers with the tools of Bioimage Analysis. We will help you getting quantitative information from images, either by collaborating with you on your project, building new image analysis tools for your research, training you, or by giving you access to commercial software for image analysis.

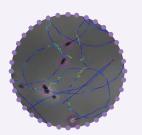
Head of Core Facility: Jean-Yves Tinevez

Contact

Mail: iah@pasteur.fr

Website: https://research.pasteur.fr/en/team/

image-analysis-hub/

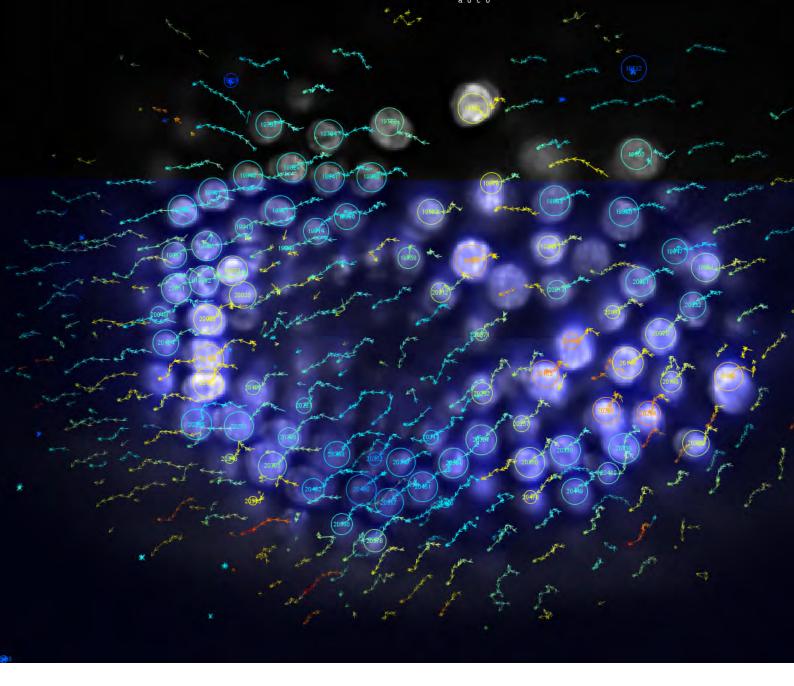

Mission

Our mission is to support researchers with the tools of Bioimage Analysis. We are an open access, equal access core facility committed to offering support in image analysis for the Institut Pasteur campus. All requests involving images are considered.

What we do

Our services are organized mainly around 4 activities:

- 1. Offer walk-in support and trainings for questions involving image analysis.
- 2. Build and deploy custom analysis tools for projects requiring special developments.
- 3. Maintain an infrastructure for autonomous image analysis. Deal with complex tool deployments.
- 4. Develop original and innovative software tools for image analysis, whose scope exceeds user projects.


We also conduct or contribute to several development projects that aim at building several end-user software tools for image analysis, whose scope exceeds that of a single user project. These tools include Icy, Fiji, TrackMate, Mastodon, etc. These tools give us platforms to answer future requests quicker, and give a competitive advantage to early adopters.

Our expertise includes

- · image analysis techniques
- handling large images
- · deep-learning
- biophysics
- · software development

Some examples of success stories

- Shigella-mediated oxygen depletion is essential for intestinal mucosa colonization. Tinevez, Arena et al, Nature Microbiology 2019.
- Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. Wolff, Tinevez, Pietzsch et al, Elife 2018.

How to work with us/how to apply for support

Open desks are organized every two weeks on Thursday mornings to make a first contact with the team. You can also submit a project or request a training on our PPMS page: https://www.pasteur.fr/ppms/?IAH.

We typically collaborate with our users, contributing scientifically to their projects with image analysis. We also organize trainings and workshops to disseminate know-how to the campus.

Certifications and Networks

We are ISO 9001 certified.

We are part of the NEUBIAS (Network of European BioImage Analysts) consortium (http://neubias.org) and of France-Bioimaging (https://france-bioimaging.org/).

NANOBODY DISCOVERY, PROTEIN PRODUCTION, MOLECULAR BIOPHYSICS AND STRUCTURAL BIOLOGY

Production and Purification of Recombinant Proteins Technological Core Facility (PF3PR)

A versatile protein production and purification core facility for your projects

Head of Core Facility: Stéphane Pêtres

Contact

Mail: PF3PR@pasteur.fr

Website: https://research.pasteur.fr/en/team/production-and-purification-of-recombinant-

proteins/

The PF3PR facility was created to provide large amounts of high-quality purified proteins for the researchers from Institut Pasteur and other academic or non-academic institutions.

What we do

Our team provides high-quality recombinant proteins produced in baculovirus, mammalian cells, *E. coli* or yeast, mainly for structural (X-ray, NMR or Cryo-EM) or functional studies. PF3PR has the expertise staff and large-scale range equipment to deliver proteins through a standardized "pipeline": automated screening of host-vector expression systems in micro-plates (Tecan platform), optimization of processes in low scale micro-bioreactors, culture scale-up in large volume conventional bioreactors, and chromatographic protein purifications using AKTA systems.

Our core facility is widening the automated processes of culture screening, purification and analyses to a larger number of eukaryotic and prokaryotic expression systems through the implementation of new equipment and new methodologies.

Our expertise includes

- Providing high quality purified proteins in large quantities in the context of services or scientific collaborations, taking into consideration the requirements of delivery in times and costs.
- Optimization and scale-up of protein production using eukaryotic and prokaryotic multiple expression systems.
- Technological and methodological developments to diversify expression systems and biotechnological tools to overcome the expression of difficult proteins.
- Providing to the users of our core facility, scientific and technical training and expert advices concerning the choice of expression systems, culture processes and protein purification

Some examples of success stories

- Recognition determinants of broadly neutralizing human antibodies against dengue viruses (in collaboration with structural virology unit).
- Structural features of Crl protein that binds and activates the σ^s subunit of bacterial RNA polymerase (in collaboration with Biochemistry of macromolecular interactions unit).
- Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Rouvinski A et al. Nature. 2015 Apr 2, 520, 109-13.
- The stress sigma factor of RNA polymerase RpoS/σ^s is a solvent-exposed open molecule in solution. Cavaliere P, et al. Biochem J. 2018, 475, 341-354.

How to work with us/how to apply for support

In order to check the adequacy between our proposed services and your project, please send us a few lines to PF3PR@pasteur.fr.

Then you will be asked to complete the form available for download on our website to submit a project.

Regular open desks are organized with other core facilities involved in protein science (from production to structure, dynamics and biophysics) to make a first contact with the team and to discuss your project.

Certifications and Networks

We are IBiSA labeled and member of CTLS (Core Technologies for Life Sciences) and P4EU

(Protein Production and Purification in Europe).

Antibody Engineering Core Facility (PFIA)

To raise nanobodies for basic science support, in vivo imaging and diagnosis

Nanobodies or VHHs are variable antibody fragments isolated from Heavy chain antibodies that are naturally occurring in only Camelidae (camel, dromedaries, llamas, alpacas). These molecules behave like full antibodies in term of antigen binding but they possess some very interesting features allowing them to be potent biotechnological tools: they are small, they diffuse extensively in body tissues, they penetrate into the brain and they bind intracellular antigens. VHHs are useful for basic science, brain imaging, viral diagnosis / neutralization, etc.

Head of Core Facility: Pierre Lafaye

Contact

Mail: anticorps@pasteur.fr

Website: https://research.pasteur.fr/fr/team/

antibody-engineering/

Mission

Our core facility provides support in developing and characterizing VHH/nanobodies against the desired antigens. The main goal of this collaboration is to provide the right nanobodies that suit to the need of the user. We try not only to provide nanobodies but we can modify them: for example, according to the need, the nanobodies can be engineered to add a fluorochrome, to perform imaging; in this way, bispecific molecules can be created.

What we do

We immunize alpacas with the antigen. After immunization, we recover lymphocytes to isolate RNA. By RT-PCR we obtain cDNA encoding for nanobodies genes. These genes are then cloned in a phagemid vector to obtain phage displayed nanobody libraries. Pannings with the antigen are performed to isolate the specific VHHs. The selected VHHs are then expressed and characterized.

Our team carries out support tasks and develops new protocols for immunization (DNA or cell-based immunization) and for site-specific labeling of nanobodies.

We also develop innovative methods in dropletbased microfluidic solution for high-throughput identification of antigen-specific VHHs. This process will enable highly efficient and rapid identification of specific VHHs from circulating B cells within days of blood sampling from immunized alpacas.

Our expertise includes

- Phage display of phage VHH libraries
- Expression and characterization of nanobodies
- Site specific labeling with fluorochromes
- · Droplet based microfluidic
- Automatization of the processes
- Rapid dipstick diagnostic tests

Some examples of success stories

Li et al, Camelid single-domain antibodies:
 A versatile tool for in vivo imaging of
 extracellular and intracellular brain targets.
 Journal of Controlled Release 2016, 243,
 1-10.

- Charles-Orszag et al, Adhesion to nanofibers drives cell membrane remodeling through 1D wetting. Nature Communication, 2018, 9, 4450.
- Prehaud C, Lafaye P, Lafon M. Nanobodies suitable for neuron regeneration therapy.
 Patent: EP 14306388 PCT/EP2015/070669

How to work with us/how to apply for support

Regular open desks are organized with other core facilities involved in protein science (from production to structure, dynamics and biophysics) to make a first contact with the team. Alternatively, a request for support starts by sending a mail (anticorps@pasteur.fr). A meeting is organized to analyse the feasibility of the project and the needs of the applicant. Then a form has to be filled and submitted as a project.

Certifications and Networks

We are IBiSA labeled.

We are part of the EuroMabnet Network and CTLS (Core technologies for life sciences).

Molecular Biophysics Technological Core Facility (PFBMI)

All you need to master your biological system at the molecular level

The PFBMI brings together a large panel of complementary technologies that allow to dissect the molecular processes involved in life and disease, and to design efficient therapies and prophylaxes. The PFBMI experts will help you to obtain meaningful insights into the physicochemical properties of the biological macromolecules and assemblies of YOUR project. You will also be able to receive high-quality training and to develop new skills under our guidance.

Head of Core Facility: Patrick England

Contact

Mail: biophysique@pasteur.fr

Website: www.pasteur.fr/biophysics/

Mission

At the PFBMI, you will find the largest panel of molecular-scale characterization approaches available in France, enabling you to gather precise quantitative data about your proteins (or other macromolecules) and the interactions in which they are involved.

The PFBMI provides cutting-edge instrumentation and expertise to support the campus and the scientific community in general (both in academic and industrial contexts).

For each technology, expert support is available and users can be trained to gain operational autonomy. Turnkey solutions for quality control of purified protein samples are also provided.

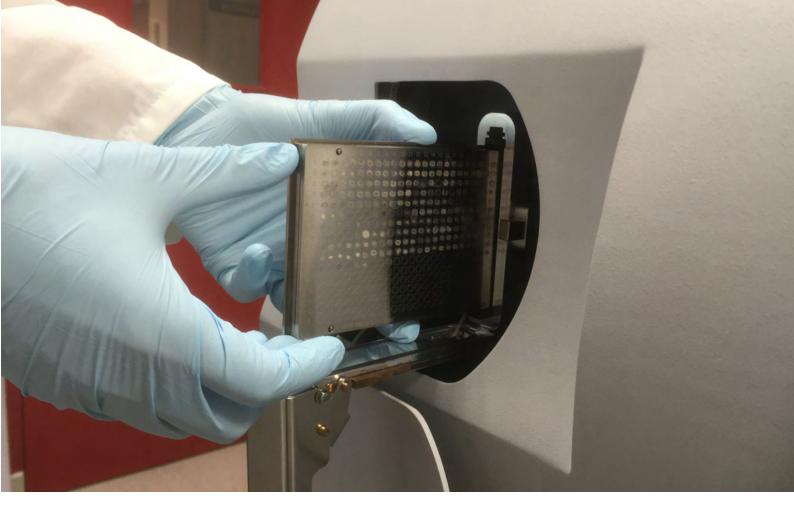
PFBMI also develops innovative approaches, in particular regarding the analysis of membrane proteins, large multi-molecular complexes and lipid-protein interactions.

What we do

The following biophysical technologies are available on campus:

Analytical ultracentrifugation (AUC), Circular dichroism (CD), Fluorescence spectroscopy (including anisotropy and DSF), Light scattering (DLS and MALS) Microcalorimetry (ITC and

DSC), Microscale thermophoresis (MST), Realtime biosensing (SPR and BLI) and Taylor dispersion/viscometry. PFBMI also provides access to synchrotron facilities for small-angle X-ray scattering (SAXS) measurements.


You feel lost among all these technologies and acronyms? Don't worry: we are here to help you through and make sure you go back home with more than what you expected!

Our expertise includes

- · Molecular interactions
- Hydrodynamics
- Spectroscopy
- Kinetics
- Thermodynamics
- · Purified protein quality control

Some examples of success stories

 The PFBMI plays an essential role in the development of novel therapeutic antibodies against a variety of targets, involved notably in viral and autoimmune diseases. Fruitful collaborations have been developed over the years, for instance with the teams of Felix Rey and Pierre Bruhns, leading to recent high profile publications (Nature, Science, Nature Biotechnology) and patents.

Efficient international networking is necessary
for a core facility to remain at the forefront.
The PFBMI coordinates a pan European
network in molecular-scale biophysics, which
was lacking until 2014. ARBRE-MOBIEU (see
below) currently connects more than 150
laboratories from 30 European countries. By
working with us, you will be in touch with all
the expert stakeholders in the field, wherever
they are situated.

How to work with us/how to apply for support

You can meet with the PFBMI team at regular open desks that are organized jointly with the other C2RT core facilities involved in the field of protein science.

Requests should be submitted by e-mail to biophysique@pasteur.fr

An initial face-to-face meeting allows to design a tailored experimental strategy and to agree together on an implementation procedure (potentially involving both the PFBMI personnel and that of the requesting lab). The PFBMI always tries to ensure that it provides a significant added value to each project it is involved in. After initial proof-of-concept experiments, partnerships are strongly valued and encouraged (for instance joint grant applications, student co-tutorship...).

Furthermore, the PFBMI encourages the users to become autonomous and trains them accordingly.

Certifications and Networks

We have been labeled by IBiSA as a core facility of national relevance since 2008.

We initiated in 2014 a network of molecularscale biophysics core facilities, infrastructures and resource laboratories: ARBRE-MOBIEU (Association of Resources for Biophysical Research in Europe / Molecular Biophysics in

Europe). This large network, coordinated by Patrick England, currently is a large pan European COST Action and is widely recognized as the reference in the field.

Crystallography Platform (PFX)

High-throughput crystallization screening and 3D structure determination of biological macromolecules

X-ray crystallography is the most widely used technique to reveal the three-dimensional structure of biological macromolecules at atomic resolution. These structures are essential to understand the molecular details of protein function, protein-protein interactions and overall mechanistic reactions.

The biological macromolecules studied by research groups at Institut Pasteur are of major concern in the field of life sciences related to human health. With this powerful technique, our goal is to solve the three-dimensional structures of biological macromolecules for therapeutic, diagnostics and vaccine development.

Head of Core Facility: Ahmed Haouz

Contact

Mail: pf6@pasteur.fr

Website: https://research.pasteur.fr/fr/team/

crystallography/

Mission

The crystallography core facility provides research groups working in the field of macromolecular crystallography with the expertise and technology required for high-throughput crystallization screening, X-ray diffraction measurements, and crystallographic computing.

We offer expertise in crystallography, from the crystallization of selected protein targets to the resolution of crystal structures of biological macromolecules. We ensure this mission by participating as a partner in scientific research projects (ANR, PTR, and individual collaborations) involving studies of single proteins and protein complexes.

What we do

We offer services for high-throughput crystallization screening, crystal optimization, X-ray diffraction data collection and structure determination.

The core facility is equipped with state-of-the-art instrumentation and robotics for the 3D structure determination of biological macromolecules by X-ray crystallography. This equipment includes automated systems for liquid handling, nano-dispensing, storage and imaging of crystallization plates.

For X-ray data collection, the core facility is a member of the BAG (Block Allocation Group) of Institut Pasteur for regular access to synchrotrons ESRF (Grenoble) and SOLEIL (Saclay).

Our expertise includes

- Protein Biochemistry
- Liquid handling automation
- Crystallization of biological macromolecules
- X-Ray Diffraction
- 3D Structure determination and refinement
- Computing for crystallography

Some examples of success stories

- 1. Lisa MN *et al*, Double autoinhibition mechanism of signal transduction ATPases with numerous domains (STAND) with a tetratricopeptide repeat sensor. *Nucleic Acids Res.* 2019, **47**, 3795-3810.
- 2. Hu H *et al*, Electrostatics, proton sensor, and networks governing the gating transition in GLIC, a proton-gated pentameric ion channel. *Proc Natl Acad Sci USA*. 2018,115, E12172-E12181.
- 3. Williams AH *et al*, "A step-by-step in crystallo guide to bond cleavage and 1,6-anhydrosugar product synthesis by a peptidoglycan-degrading lytic transglycosylase." *J Biol Chem.* 2018, **293**, 6000-6010.
- 4. Barba-Spaeth G et al, Structural basis of potent Zika-dengue virus antibody crossneutralization. *Nature*. 2016, **536**, 48-53.

How to work with us/how to apply for support

For crystallography projects, depending on the expertise of the users, three options are offered: service provision, instrument allocation, and scientific collaboration.

Please apply by e-mail to: pf6@pasteur.fr

You can meet with the PFX team at regular open desk meetings organized jointly with the other C2RT core facilities involved in the field of protein science.

Certifications and Networks

We are GIS-IBiSA labeled and ISO-9001 certified.

Biological NMR Technological Core Facility (PF BioNMR)

NMR and HDX-MS technologies for your structural biology needs

Nuclear Magnetic Resonance (NMR) and Hydrogen/Deuterium eXchange followed by Mass Spectrometry (HDX-MS) are powerful and versatile techniques to tackle challenging biological questions and offer complementary information to X-ray and cryo electron microscopy.

Head of Core Facility: Iñaki Guijarro

Contact

Mail: bionmr@pasteur.fr Website: wwwBioNMR

Mission

We provide state of the art solution NMR and HDX-MS techniques to study at an atomic or molecular level protein interactions, dynamics, structure, fragment and ligand screening, post-translational modifications, real-time kinetics, chemical structure of carbohydrates and small compounds.

What we do

We are equipped with three NMR spectrometers: an 800 MHz and a 600 MHz (Bruker) dedicated to biological NMR. Both are equipped with high sensitivity cryogenic probes and automated sample changers. Our 500 MHz (Agilent) is dedicated to routine QC for chemists. HDX-MS is performed on a SynaptG2-Si HDMS (Waters) with ETD, an ACQUITY UPLC M-Class system, and a LEAP-Pal robot for automated sample handling and data acquisition.

Our team carries out support tasks, provides analysed data and develops innovative methods in HDX-MS to aid in the rapid statistical validation and visualization of large HDX-MS datasets (MEMHDX software), to study membrane proteins and proteins in complex environments.

Our expertise includes

- Molecular interactions with proteins (proteins, nucleic acids, carbohydrates, compounds...)
- Fragment/Ligand screening, hit validation and characterisation
- Protein and protein-complex dynamics over a large time-scale (picoseconds – hours)
- Intrinsically disordered proteins and protein folding
- Post-translational modifications (phosphorylations, acetylations...)
- 3D solution structure of small proteins

Some examples of success stories

- The structural analysis of B. pertussis
 CyaA toxin led to a publication in FASEB J.
 2019 (3, 10065-10076) on the role of
 acylation in the control of the function and
 folding of the toxin collaboration with A.
 Chenal.
- NMR and HDX-MS used with cryoEM to unravel the dynamics of a type 2 secretion system pseudopilus – collaboration with N. Izadi and M. Nilges (*J Biol NMR*, 2019,73, 293-303).

How to work with us/how to apply for support

You can meet with the BioNMR core facility team at regular open desks that are jointly organized with the other C2RT core facilities involved in the field of protein science.

A request for support starts by sending an email to bionmr@pasteur.fr, contacting us by phone or personally, prior to submit an application and a sample description form available on our website. We will shortly organize a meeting to define with you the feasibility, the experimental strategy and the schedule.

In most instances, we will perform experiments and analyse the data. For relatively long studies (> 1.5 years), we will provide hands-on training and technically support PhD students or postdocs throughout their project to become autonomous. In addition, we provide spectrometer time for NMR experts or we record data to be analysed by the users.

SCREENING, MICROFLUIDICS AND ORGAN ON CHIPS

Chemogenomic and Biological Screening Core Facility (CCB)

Exploring the world of small molecules and biologics for new medicines and deciphering biological networks

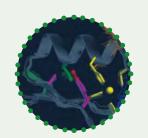
Chemogenomic and biological screening are important steps in precision medicine and for the discovery of new medicines, as well as in dissecting molecular pathways and biological networks.

Head of Core Facility: Fabrice Agou

Contact

Mail: pfccb@pasteur.fr

Website: https://research.pasteur.fr/fr/team/


fabrice-agou-team/

We support researchers in improving the efficiency of their target-based (HTS) and phenotypic (HCS) screening bioassays, in identifying genetic modulator of function, in assessing target engagement, in isolating high quality chemical or biological substances of therapeutic, diagnostic or mechanistic interest, as well as in using core technologies typically applied to miniaturization and automation of bioassays.

What we do

We assist research teams with the development of robust target-based (HTS) and phenotypic (HCS) assays, and provide high quality hits. For HCS, phenotypic analysis can be carried out either with a conventional automated microscope (IX83, Olympus) or the new microscope StellarVision (Optical Biosystems, USA) that uses structured illumination and Synthetic Aperture Optics (SAO). For HTS screening, we have the ability to support cellular and biochemical assays using a wide variety of HTS readouts (absorbance, fluorescence anisotropy, AlphaScreen, HTRF, luminescence and TSA). We also make available the Octet HTX instrument, which enables high throughput label-free detection via biolayer interferometry (BLI) technology (FortéBio, Molecular Devices).

With our liquid acoustic dispenser (Echo550, Labcyte), we can very easily reformate multiwell plates for you (96, 384 and 1536 format), offer cherry-picking service and prepare any daughter plates from our biological and chemical collections. Finally, we also provide strong supports for developing chemical probes as well as drug candidates (hit to lead and lead optimization), especially for some promising projects with a high therapeutic index.

Our expertise includes

Assay development for HCS and HTS screening bioassay; protein-protein and RNA-protein interaction inhibitors; medicinal chemistry; target deconvolution following phenotypic screen: various functional and chemical libraries including small molecules, cyclic peptidomimetics, antibody-like protein and siRNA/gRNA (ubiquitome and personalized siRNA libraries).

Some examples of success stories

 Fanucchi S, Fok ET, Dalla E, Shibayama Y, Börner K, Chang EY, Stoychev S, Imakaev M, Grimm D, Wang KC, Li G, Sung WK, Mhlanga MM. 2019, Nat Genet. 51, 364.

- K. Nhabane Said Halidi, E. Fontan, L.
 Davignon, A. Boucharlat, M. Charpentier, M.
 Boullé, R. Weil, A. Israël, E. Laplantine & F.
 Agou 2019. IScience (Cell Press), 20, 292-309.
- K. Nozeret, A. Boucharlat, F. Agou & N. Buddelmeijer* (2019). Sci Rep, **9**, 15978.

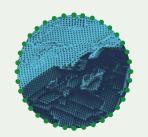
How to work with us/how to apply for support

A request for support starts by sending a mail to pfccb@pasteur.fr. You will be asked to give us an overview of your project at first, submit your project to our steering committee, and then meet in person to give us any details so we can figure out together the best way to develop and miniaturize your HTS or HCS bioassay. We can also assist and train you to become autonomous on some automated equipment, help you during every steps of the screening process, and can perform for you a small, medium and large screening campaign.

Certifications and Networks

France: Société de Chimie Thérapeutique (SCT) and ELRIG (European Laboratory Research & Innovation Group).

Europe: Core for Life; USA: HTRC Rockefeller, NY (High Throughput & Spectroscopy Research Center).



Biomaterials and Microfluidics Core Facility (BMcf)

Designing and producing your advanced cell culture system

Today's biomedical research heavily relies on fast-pace innovation. The use of state-of-the-art technologies offers an important competitive advantage. Both microfluidics and 3D cell culture technologies opened new venues for the development of innovative cellular assays as they allow a better recapitulation of the biophysical and biochemical microenvironment.

Head of Core Facility: Samy Gobaa

Contact

Mail: bmcf@pasteur.fr, microfluidics@pasteur.fr,

samy.gobaa@pasteur.fr

Website: https://research.pasteur.fr/fr/team/

biomaterials-and-microfluidics/

Mission

Our objective is to bridge biology and engineering in order to help the development of biomedical projects with a strong technological focus. To this end, we provide a set of tools targeted for the better understanding of complex cell-pathogen and or cell-microenvironment interactions.

What we do

We provide the campus with microfluidic chip design and production capabilities, a library of synthetic hydrogels dedicated to 3D cell culture. We are also investigating multiple organoid protocols. Finally, we are operating an Organon-Chip Center that offers microfluidic systems capable of recapitulating organ/tissue function *in vitro*.

Our expertise includes

- Microfabrication
- Microfluidics
- Hydrogels
- Micro-patterns
- · 3D cell culture
- · Organ-on-Chip

Some examples of success stories

- In collaboration with the team of Nathalie
 Sauvonnet we have developed a new model
 of intestinal infection based on a microfluidic
 Organ-on-Chip device. This tool showed
 that Shigella infection can be faithfully
 recapitulated in by mimicking the mechanical
 forces of the intestinal microenvironment
 (including shear stress and peristaltic motion)
 on-chip.
- Bioengineered Human Organ-on-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection. Grassart A, Malardé V, Gobaa S, Sartori-Rupp A, Kerns J, Karalis K, Marteyn B, Sansonetti P, Sauvonnet N.

How to work with us/how to apply for support

You've got an idea. You think (bio)engineering can help.

Then feel free to contact the BMcf team for a joint brainstorming, consulting or even for outlining a future collaboration. Classically we run 3 types of projects.

- 1. Do it Yourself. There you are the boss. BMcf will just provide training on the equipment and ensure proper maintenance and operation.
- 2. Proof of Concept projects. Here BMcf will start the project in order to perform a set of exploratory experiments.
- Co-Development. This is the most integrated form of collaboration. Usually it involves joint application to grants and dedicated WP for BMcf.

You can reach us by e-mail, by phone or just by simply dropping by the lab anytime. Our philosophy is to accept all the (technologically feasible) requests (no prioritization). We commit ourselves to providing you with a first answer on feasibility within a few days.

ANNEXES

GUIDELINES

Relationships between users and C2RT/C2RA core facilities members & Acknowledgement of contributions from C2RT/C2RA core facilities members

Institut Pasteur continuously invests to provide its research teams with access to a state-of-the-art environment through core facilities and technology and service units (UTechS) located on its campus.

These resources are coordinated by the technology and scientific programs department (DTPS) through two centers: the technological resources and research center (C2RT) and the animal resources and research center (C2RA).

Through their expertise, services and shared equipment, the C2RT/C2RA core facilities support research teams in the technological and animal research components of their projects from grant writing to project implementation and publication.

The entities of C2RT and C2RA, as shared resources, aim to support all the research teams of the campus. They are also open to external users from national and international research organizations or private institutions.

The guidelines outlined in this document aim to facilitate interactions between the users and C2RT/C2RA teams all along the life of a project. In addition, they are also intended to allow as many people as possible to access these resources. The guidelines have been established by the technology and scientific programs department (DTPS) in collaboration with all the Scientific Departments and have been validated by the scientific direction committee (CODIS).

They apply to any type of project involving a user and a C2RT/C2RA team (including training, assisted sessions, routine or non-routine service, scientific collaboration, etc.).

This document presents a first version of these best practice guidelines. To ensure continuous improvement, they may evolve over time.

A team
쏬
\ddot{c}
2RT
0
Ø
and

Key practices applicable to both users and C2RT/C2RA teams

Key practices specific to users / research teams

Key practices specific to C2RT/C2RA teams

Discuss about the user's request as early as possible after its filing in order to identify the technological challenges and qualify the feasibility of the project.

Discuss the constraints faced by the user and by the C2RT/C2RA team as soon as possible.

Specify the **key elements** of the request, the **expected results** and how the request fits into the research project.

Acknowledge receipt of the user's request. Recall the principle of **equal access** to C2RT/C2RA core facilities. Present the core facility's operation modalities and the **criteria used for prioritizing/selecting projects**.

Indicate what level of involvement of the user will be necessary for the successful implementation / completion of the project.

Provide the user/PI with an estimate of the cost of the project and of the expected timeframe, including approximate time periods between the main steps of the process.

Definition & planning

Frame the project while remaining flexible.
Define the **key elements** (for example project objectives, project steps and associated milestones, the nature of the work to be done (routine or nonroutine), the distribution of **roles and responsibilities**, the **necessary resources**, the associated **deadlines** and **fees**).

Define in particular how each project participant shall be involved (both on the side of the requesting laboratory and the platform).

Indicate the **risks/ uncertainties** related to the project and how they would be handled.

Establish a **«roadmap»** of the project together with the associated cost estimate (when applicable) and send it to the **PI for validation**. Define the **contact people** for the project implementation (scientific and administrative).

Ensure that all the people who will be directly involved take part in the **definition** and planning phase of the project.

Define the **contact people** for the scientific and administrative components of the project especially if the project goes beyond the routine activities of the core facility.

If, from the Core Facility's viewpoint, the project goes beyond routine activities and requires significant intellectual involvement, inform the user and his/her Pl/group leader from the beginning. Define, in agreement with the Pl, the expectations regarding authorship (see appendix below).

ш
ਰ
pu
\simeq
Ĕ
Ĕ
Ĕ
you
you
you
l beyon
l beyon
l beyon
ind beyond

Key practices applicable to both users and C2RT/C2RA teams

Key practices specific to users / research teams

Key practices specific to C2RT/C2RA teams

recution and follow-up

Interact periodically

throughout the project, and monitor achievements and difficulties encountered if any.

Inform each other as soon as possible of any change that may affect the project.

Alert the Core Facility team as early as possible if any change occurs in the project expectations. Jointly define the changes to be made. If these changes are important, it may be better to close the project and define a new one.

Alert the user and research team leader/PI as early as possible if any difficulty occurs in the implementation of the project.

Discuss with the user and with his/her group leader or PI to define the actions to be taken to overcome the encountered difficulties.

Alert the user and his/ her PI if the intellectual contribution of the core is greater than originally planned. If appropriate, close the project and define a new one.

Closing of the p

In case the project needs to be overhauled, close it and file a new application.

Hold a final meeting to review the results. Invite if needed the Pl/group leader to participate in this meeting.

To ensure **continuous** improvement, share the encountered difficulties, the adequacy of the solutions provided during the project, the possible improvements.

Provide **feedback** on the exploitation of the results obtained and their integration into the overall project framework.

Acknowledge the contribution of the Core Facility team. When appropriate invite them to contribute to the drafting of the **publication** (see appendix below).

Proceed to the **payment** of the related invoices.

Hand over the **deliverables** that were agreed on and, if necessary, the associated raw data.

When appropriate, assist the user in the drafting of the publication(s) associated with the project (see appendix).

Appendix

Acknowledgement of the contributions of C2RT/C2RA core facility members in manuscripts and grants

Acknowledgment of the contributions of core facility staff in publications and grants (application and reports) is regarded as a key indicator of the impact of their activities. It is also an element that is taken into account by funders when evaluating funding applications filed by core facilities, as well as by evaluation bodies when rating core facility staff and deciding on their career progression.

Guideline 1

Acknowledge the contribution of a core facility in publications and grants (both application and reports) every time its services and/or equipement have been used. If the project goes beyond the routine activities of the core facility and requires significant intellectual involvement, the PI or the head of the research group involved and the head of the core facility jointly agree on the most appropriate way to acknowledge the contribution of the core staff (acknowledgment or invitation to be a co-author).

Guideline 2

Format of acknowledgement in a publication: name whenever possible the person (s) who contributed or by default the core facility as a whole, and indicate the official name of the entity along with its center of attachment (C2RT or C2RA): « we thank (names of people involved) of (official name of the core facility or UTechS) of C2RT/C2RA for » or, by default, «we thank the staff of (official name of the core facility y or UTechS) of C2RT/C2RA for »

The official names of the entities of C2RT and C2RA are available at:

research.pasteur.fr/center/C2RT research.pasteur.fr/center/C2RA

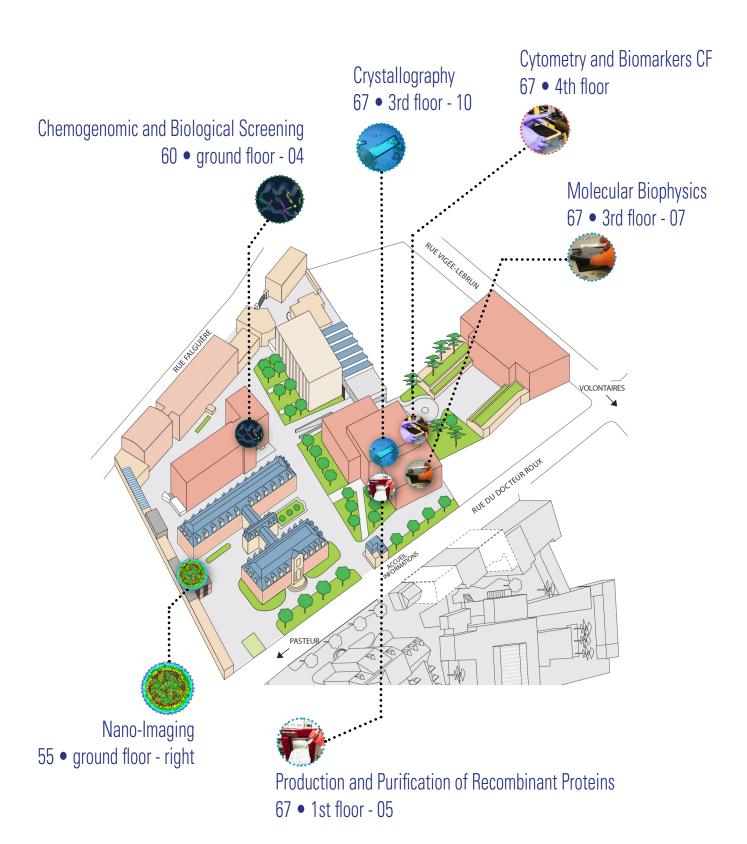
Format for co-authorship: Name of the co-author, Name the entity (official name of the core facility or UTechS), center of affiliation (C2RT or C2RA), Institut Pasteur, Paris (75015) France.

Guideline 3

A core facility staff member may refuse to be a co-author of a publication. In this case, the core facility will be mentioned in the acknowledgments (see guideline 2).

Guideline 4

Disagreements over the type of recognition shall first be handled by the head of the core facility/UtechS and the PI, who will make their best efforts to find an agreement meeting their respective expectations as well as those of their collaborators.


If a mutually agreeable solution cannot be found, the PI or the head of the core facility /UtechS shall refer the matter to the vice president for technology and scientific programs. As a last resort the case shall be addressed to the ethics committee of Institut Pasteur.

Affiliation of CRT UTechS/CFs to Scientific Departments

Technological domain	Core Facilities	Heads	Departements
Omics, Proteomics and Single Cell	Biomics	Marc Monot	Genomes and Genetics
	Mass Spectrometry for Biology UTechS	Julia Chamot-Rooke Mariette Matondo	Structural Biology and Chemistry
	Cytometry and Biomarkers UTechS	Milena Hasan Sophie Novault	Immunology
Multiscale imaging	Photonic Bio-Imaging UTechS	Spencer Shorte Nathalie Aulner	Cell Biology and Infection
	Ultrastructural Bio-Imaging UTechS	Jacomina Krijnse Locker	Cell Biology and Infection
	Nano-Imaging	Matthijn Vos	
	Image Analysis Hub	Jean-Yves Tinevez	Cell Biology and Infection
Nanobody discovery, Protein production, Molecular Biophysics and Structural Biology	Production and Purification of Recombinant Proteins	Stéphane Pêtres	Structural Biology and Chemistry
	Antibody Engineering	Pierre Lafaye	Structural Biology and Chemistry
	Molecular Biophysics	Patrick England	Structural Biology and Chemistry
	Crystallography	Ahmed Haouz	Structural Biology and Chemistry
	Biological NMR	Iñaki Guijarro	Structural Biology and Chemistry
Screening, Microfluidics and organ on chips	Chemogenomic and Biological screening	Fabrice Agou	
	Biomaterials and Microfluidics	Samy Gobaa	Developmental and stem cell biology

Location of UTechS/CFs

- research.pasteur.fr/center/C2RT
- c2rt@pasteur.fr

The Center for Animal Resources and Research (C2RA)

- research.pasteur.fr/center/C2RA
- c2ra@pasteur.fr